Ferrocene Molecular Architectures Grafted on Si(111): A Theoretical Calculation of the Standard Oxidation Potentials and Electron Transfer Rate Constant

نویسندگان

  • Claudio Fontanesi
  • Massimo Innocenti
  • Davide Vanossi
  • Enrico Da Como
چکیده

The standard oxidation potential and the electron transfer (ET) rate constants of two silicon-based hybrid interfaces, Si(111)/organic-spacer/Ferrocene, are theoretically calculated and assessed. The dynamics of the electrochemical driven ET process is modeled in terms of the classical donor/acceptor scheme within the framework of "Marcus theory". The ET rate constants, k E T , are determined following calculation of the electron transfer matrix element, V R P , together with the knowledge of the energy of the neutral and charge separated systems. The recently introduced Constrained Density Functional Theory (CDFT) method is exploited to optimize the structure and determine the energy of the charge separated species. Calculated ET rate constants are k E T = 77.8 s - 1 and k E T = 1.3 × 10 - 9 s - 1 , in the case of the short and long organic-spacer, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of N-4,4'-azodianiline(ferrocenyl Schiff base) for electrocatalytic determination of atenolol on modified carbon paste electrode

A carbon-paste electrode (CPE) chemically modified with the N-4,4'-azodianiline(ferrocenyl Schiff base) complex and multi wall carbon nanotubes (ADAFCNTE) was used as a highly sensitive electrochemical sensor for determination of trace amounts of atenolol. The oxidation peak potentials in cyclic voltammogram of ADAFCNTE occurred around 550 mV vs Ag/AgCl (at pH 6.0) while this peak potential at ...

متن کامل

Primitive Molecular Recognition Effects in Electron Transfer Processes: Modulation of ((Trimethylammonio)methyl)ferrocenium/ferrocene Self-Exchange Kinetics via Hydrophobic Encapsulation.

1H NMR line broadening measurements show that the electron self-exchange rate constant for ((trimethylamino)methyl)ferrocenium/ferrocene (TMAFc(2+/+)) in D(2)O as solvent is decreased by ca. 20-50 fold in the presence of excess beta-cyclodextrin. The rate effect is associated with the selective hydrophobic encapsulation of the ferrocene form of the redox couple (i.e., the ferrocenium form is no...

متن کامل

Electron Transfer through Surface-Grown, Ferrocene-Capped Oligophenylene Molecular Wires (5-50 Å) on n-Si(111) Photoelectrodes.

We report the surface growth of oligophenylene molecular wires on Si(111) substrates and their electron-transfer (ET) properties. Iterative wire growth of biphenylene was achieved via Pd-catalyzed Negishi reactions for lengths of nphenyl = 1, 2, 4, 6, 8, and 12 (d ≈ 5-50 Å). The triflato-capped wires were functionalized with vinylferrocene for potentiometric studies. For the oligophenylenes of ...

متن کامل

Heterogeneous electron transfer kinetics and electrocatalytic behaviour of mixed self-assembled ferrocenes and SWCNT layers.

The electron transfer dynamics and electrocatalytic behaviour of ferrocene-terminated self-assembled monolayers (SAMs), co-adsorbed with single-walled carbon nanotubes (SWCNTs) on a gold electrode, have been interrogated for the first time. Ferrocene monocarboxylic acid (FMCA) or ferrocene dicarboxylic acid (FDCA) was covalently attached to the cysteamine (Cys) monolayer to form Au-Cys-FMCA and...

متن کامل

Electron transfer at self-assembled monolayers measured by scanning electrochemical microscopy.

New approaches have been developed for measuring the rates of electron transfer (ET) across self-assembled molecular monolayers by scanning electrochemical microscopy (SECM). The developed models can be used to independently measure the rates of ET mediated by monolayer-attached redox moieties and direct ET through the film as well as the rate of a bimolecular ET reaction between the attached a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017